Case-Based Reasoning and Knowledge Discovery in Medical Applications with Time Series

نویسندگان

  • Peter Funk
  • Ning Xiong
چکیده

This paper discusses the role and integration of knowledge discovery (KD) in case-based reasoning (CBR) systems. The general view is that KD is complementary to the task of knowledge retaining and it can be treated as a separate process outside the traditional CBR cycle. Unlike knowledge retaining that is mostly related to casespecific experience, KD aims at the elicitation of new knowledge that is more general and valuable for improving the different CBR substeps. KD for CBR is exemplified by a real application scenario in medicine in which time series of patterns are to be analyzed and classified. As single pattern cannot convey sufficient information in the application, sequences of patterns are more adequate. Hence it is advantageous if sequences of patterns and their co-occurrence with categories can be discovered. Evaluation with cases containing series classified into a number of categories and injected with indicator sequences shows that the approach is able to identify these key sequences. In a clinical application and a case library that is representative of the real world, these key sequences would improve the classification ability and may spawn clinical research to explain the co-occurrence between certain sequences and classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Discovery and Case Based Reasoning in Medical Applications with Time Series

This paper discusses the role and integration of knowledge discovery in case based reasoning systems. The general view is that knowledge discovery is complementary to the task of knowledge retaining and it can be treated as a separate process outside the traditional CBR cycle. Unlike knowledge retaining which is mostly related to case-specific experience, knowledge discovery aims at the elicita...

متن کامل

INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING

Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...

متن کامل

Accounting for the Temporal Dimension in Case-Based Retrieval: A Framework for Medical Applications

Time-varying information embedded in cases has often been neglected and its role oversimplified in case-based reasoning systems. In several real-world problems, and in particular in medical applications, a case should capture the evolution of the observed phenomenon over time. To this end, we propose to represent temporal information at two levels: (1) at the case level, when some features are ...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Assessment of Trend and Seasonality in Road Accident Data: An Iranian Case Study

Background Road traffic accidents and their related deaths have become a major concern, particularly in developing countries. Iran has adopted a series of policies and interventions to control the high number of accidents occurring over the past few years. In this study we used a time series model to understand the trend of accidents, and ascertain the viability of applying ARIMA models on data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Intelligence

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2006